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Abstract

Among all the transient techniques of measurement of the thermal conductivity, the hot-wire method is an interesting alternative to the standard
guarded hot-plate method. However, it has been proved to be poorly adapted to low-density thermal insulators notably due to edge effects, which
disturb the temperature rise. To overcome this problem, the hot-ring method, which is very close to the hot-wire technique, could be interesting
as it does not make any assumptions on the dimensions of the heating elements. In order to investigate the use of this method for measurements
on low-density thermal insulators we conducted a theoretical and experimental study on several expanded polystyrene (EPS) foam samples. The
numerical model developed solves the 2-D axisymmetric heat transfer around the ring taking into account the conduction–radiation coupling
and the inertia of the element. Numerical and experimental results show that classical hot-ring apparatus are poorly adapted to measurements on
low-density insulators owing to the thermal inertia of the elements. However, we developed a modified identification procedure eliminating the
influence of the inertia of the apparatus on the measured thermal conductivity. This new procedure gives accurate results even for EPS foams,
which could not be considered as optically thick. Thus, the hot-ring technique could be extended to low-density thermal insulators.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The accuracy of thermal properties measurement takes on
particular importance in numerous physical, chemical or med-
ical applications given that it has a direct influence on the
estimation of heat losses, or temperature rise. For purely con-
ductive materials, heat transfer is characterized by the basic
energy equation and the Fourier law depending on three pa-
rameters: the thermal conductivity, the density and the spe-
cific heat. Standard measuring methods of these parameters are
based on steady state techniques. For the estimation of the ther-
mal conductivity, the principle of the guarded hot plate method
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is to measure the heat flux passing through a slab of materials
subjected to a one-dimensional steady state heat transfer. This
technique gives very accurate results. Nevertheless, it is restrict-
ing given that the slab must have large and standard dimensions
and that it requires especially long measuring durations.

That is the reason why, during the last two decades, there
has been a significant development of the transient methods of
measurement of thermophysical properties on a broad range of
materials. For example, Tan et al. [1], Hahn et al. [2] or Lazard
et al. [3] studied the application of the flash method for the mea-
surement of the thermal diffusivity of semi-transparent media
in which radiative heat transfer is significant. Lazard et al. [3]
proposed a complete methodology to adapt the method to this
kind of materials. Nevertheless, the transient method which is
the most widely used for the measurement of thermal conduc-
tivity is the so-called hot-wire method. Indeed, it is relatively
simple and fast as it is based on the transient measurement
of the temperature rise of a uniformly heated wire. Moreover,
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Nomenclature

A thickness of the kapton slab . . . . . . . . . . . . . . . . . . m
B thickness of kapton still present around the ring for

configuration 3 (see Fig. 4) . . . . . . . . . . . . . . . . . . m
C specific heat . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

Cp specific heat of the porous medium . . J kg−1 K−1

g = 0.5
∫ 1
−1 P(μ′)μ′ dμ′ asymmetry factor of the phase
function

I (r, z, θ,ϕ) radiant intensity at point (r, z) in the direction
(θ,ϕ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−2 sr−1

I 0(T ) radiant intensity emitted by a black body at
temperature T . . . . . . . . . . . . . . . . . . . . W m−2 sr−1

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

kc effective or phonic thermal conductivity of the
material . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

keq.m equivalent thermal conductivity measured by the
guarded hot-plate method . . . . . . . . . . W m−1 K−1

keq.th equivalent thermal conductivity computed theoreti-
cally for a 1-D steady-state heat
transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

khot thermal conductivity evaluated by the hot-ring
method . . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1 K−1

nd number of directions of the angular discretization
nR,nZ,nϕ number of spatial discretization along the r , z

and ϕ coordinates respectively
nRm number of radial discretization for the volume with

radius lower than Rr

nϕ number of discretization of the angle ϕ

nϕr number of ϕ discretization occupied by the ring
P(ν) global scattering phase function
qc conductive heat flux . . . . . . . . . . . . . . . . . . . . W m−2

qr radiative heat flux . . . . . . . . . . . . . . . . . . . . . . W m−2

qt total heat flux . . . . . . . . . . . . . . . . . . . . . . . . . W m−2

Q̇ heating power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W
r radial coordinate
R Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
t heating time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

Tc temperature at the center of the ring . . . . . . . . . . K
V volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m3

wm weighting factors of the discretization
z axial coordinate

Greek symbols

β,κ and σ global extinction, absorption and scattering
coefficients (β = κ + σ ) . . . . . . . . . . . . . . . . . . m−1

σSB Stefan–Boltzmann constant
(≈ 5.67 × 10−8 W m−2 K−4)

ε emissivity
λ Wavelength of radiation . . . . . . . . . . . . . . . . . . . . µm
ρ density of the foam . . . . . . . . . . . . . . . . . . . . kg m−3

ρr density of the material constituting the
hot-wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

ρk density of the kapton slab . . . . . . . . . . . . . . kg m−3

η = sin θ. sinϕ direction cosine
μ = sin θ. cosϕ direction cosine along the radial coordinate
ξ = cos θ direction cosine along the axial coordinate
(θ,φ) direction angles of the radiant intensity
ϕ azimuthal angle
ν = μ.μ′ + η.η′ + ξ.ξ ′ is the cosine of the angle between

incident and scattering directions
ψ angle covered by the ring
ω = σ/β scattering albedo
Ωr electrical resistance of the ring . . . . . . . . . . . . . . . �

Ω solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . sr

Subscripts

init initial
k of the kapton slab
max maximal coordinate
r of the ring
ROSS from Rosseland approximation

Superscript

r along the radial coordinate
z along the axial coordinate
measurements could be made on samples with any shapes and
relatively small sizes. It has been used successfully in numer-
ous studies such as [4] for solid and pasty thermal insulators or
soil [5] and gives satisfactory results. However, as the method
is based on the Fourier diffusion law, it is theoretically not ap-
plicable to materials where radiative heat transfer occurs such
as low-density thermal insulators.

Coquard et al. [6] have studied theoretically and experimen-
tally the application of this transient techniques to low-density
materials where both conductive and radiative transfer are sig-
nificant. They developed a detailed 2-D simulation of axisym-
metric transient heat transfer taking into account the coupling
between conduction and radiation, the inertia of the wire, the
thermal contact resistance and the edge effects. Simultaneously,
they conducted a series of measurements of the thermal conduc-
tivity using several hot wire measuring systems on four low-
density expanded polystyrene (EPS) foams whose conductive
and radiative properties have been previously characterized.
The numerical results obtained for these low-density thermal
insulators show that once the thermal inertia of the wire be-
comes negligible, the conductivity of the foams measured by
the hot-wire method tends to the equivalent conductivity given
by the guarded hot-plate method. Thus, the hot-wire measur-
ing method could theoretically be extended to semi-transparent
materials even when they do not behave like optically thick
materials (Rosseland approximation). Nevertheless, the experi-
mental and numerical investigations also revealed that classical
hot-wire apparatus are poorly adapted to equivalent thermal
conductivity measurements on thermal insulators whose den-
sity is lower than 30 kg m−3 given that the maximum length of
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classical hot-wires (L = 0.1 m) is not sufficiently important to
avoid edge effects. Then, relatively long wires should theoreti-
cally be used which would lead to a decrease of the interest of
the method whose main advantage is the commodity and con-
venience.

The hot-ring technique is another transient method of mea-
surement of the thermal conductivity. The principle of measure-
ment is very close to that of the hot-wire method except that the
heated wire is replaced by a ring at the center of which the tem-
perature rise is measured. This method presents an interest for
measurements on low-density materials given that, contrary to
the hot-wire method which assumes an infinitely long wire, no
assumptions are made on the dimensions of the heated element.
However, like the hot-wire method it is based on the assump-
tion of purely conductive medium and could theoretically not be
used on materials where radiative heat transfer occurs. In order
to determine whether the method could be extended to semi-
transparent low-density materials, we conducted a theoretical
and experimental study of the hot-ring measurement method
applied to low-density EPS foams. At first, we recall the prin-
ciple of the method and the governing equations for a complete
ring with no inertia in a purely conductive medium. Then, we
describe the theoretical model developed to take into account
the influence of the coupling between conduction and radiation
and the inertia of the apparatus on the temperature rise at the
center of the ring. The 2-D axisymmetric energy equation and
Radiative Transfer Equation are solved numerically. The radia-
tive and conductive properties of the EPS foams studied have
been determined in a previous study [7]. Finally, the analysis of
experimental and numerical results permits us to conclude on
the applicability of this method to measurement on low-density
thermal insulators.

2. Governing equations

2.1. Thin complete ring in a purely conductive medium

The principle of the standard transient hot-ring method is to
heat a thin circular ring of radius Rr immersed in the sample in
order to generate a transient temperature field in the material.
The measurement of the temperature rise at the center of the
ring allows to determine the heat conductivity of the porous
medium. Indeed, if we assume that the properties of the medium
are isotropic and independent of the temperature, that there is no
thermal resistance at the contact area between the ring and the
medium and that the ring has a negligible inertia, the evolution
of the temperature at the center is the same as that of a point
located at a distance Rr from a continuous point source and can
be obtained analytically [8] by:

�Tc = Q̇

4πkcRr

erfc

(
Rr

√
ρCp√

4kct

)
(1)

According to this formula, it is possible to determine the
thermal conductivity kc of the material from the temperature T1
and T 2 measured at time t1 and t2 at the center of the ring. In
practice, as the function erfc could not be inverted analytically,
it is necessary to use an identification procedure computing the
value of kc, which permits to best fit the temperature rise at the
center of the ring.

2.2. Real ring in a semi-transparent medium

In reality, the inertia of the ring is not negligible and the
surrounding material in which the ring is embedded is not nec-
essary a pure thermal conductor. Moreover, in practice, in order
to ascertain the well-positioning of the ring and to be able to
introduce a thermocouple at the center of the circle, experi-
mental apparatus are made of rings with square cross-section
embedded in a slab of kapton (see Fig. 1). This could disturb
the heat transfer. That is the reason why we developed a sim-
ulation of the axisymmetric transient heat transfer taking into
account the inertia of the ring and of the experimental apparatus
and the coupling between conductive and radiative heat transfer.
This model uses the same methods of resolution of the Energy
Equation and of the Radiative Transfer Equation as the model
developed in [6] for the modeling of the hot-wire method. Thus,
we only give a brief description of the model and of the resolu-
tion method in this paper and invite the reader to consult [6] for
more details. The model permits to compute the temperature in
the three different regions: The metallic ring (temperature Tr ),
the slab of kapton (Tk) and the surrounding medium (T ).

The metallic ring and the slab of kapton are considered as
opaque materials and the radiant intensity in these regions is
assumed null.
Fig. 1. Illustration of the cylindrical coordinate system around the ring.
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2.2.1. Energy Equation in the surrounding material
The heat balance in a homogeneous semi-transparent, con-

ductive but non-convective medium is governed by the energy
equation which take into account the conductive and radiative
heat transfer:

ρCp

∂T

∂t
= −�∇.�qt = −( �∇.�qc + �∇.�qr

)
= kc

∂2T

∂r2
+ 1

r
kc

∂T

∂r
+ kc

∂2T

∂z2
− �∇.�qr (2)

The phonic or effective conductivity of the material kc de-
pends on the temperature of the material. Nevertheless, for clar-
ity purpose, we will omit to specify it afterwards.

2.2.2. Radiative Transfer Equation in the surrounding medium
Regarding the radiative heat transfer, the radiative flux is re-

lated to the intensity field in the medium:

�qr = qr
r �er + qz

r �ez with qr
r (r, z) =

∫
Ω=4π

I (r, z, θ,ϕ)μdΩ

qz
r (r, z) =

∫
Ω=4π

I (r, z, θ,ϕ)ξ dΩ (3)

and

�∇.�qr = 1

r

∂

∂r

(
rqr

r

) + ∂qz
r

∂z
(4)

The radiation intensity field is governed by the Radiative
Transfer Equation (RTE) described in details in [9]. For a 2-D
axisymmetric radiative transfer in an homogeneous material
with azimuthal symmetry, this equation is:

μ

r

∂(rI (r, z, θ,ϕ))

∂r
− 1

r

∂(ηI (r, z, θ,ϕ))

∂φ

+ ξ
∂I (r, z, θ,ϕ)

∂z
+ βI (r, z, θ,ϕ)

= κI 0(T ) + σ

4π

∫
Ω ′=4π

P (ν)I (r, z, θ ′, ϕ′) dΩ ′ (5)

We can notice that it is necessary to know the temperature
field in the medium to solve the RTE and to determine the radi-
ation intensity field.

2.2.3. Radiative boundary conditions
The boundary conditions at the interface between the sur-

rounding medium and the ring or the slab of kapton are related
to the emissivity of the kapton or ring:

I (r,A/2, θ, ϕ) = εk,r I
0(T (r,A/2)

) + 1 − εk,r

π

×
∫

Ω ′=2π; ξ ′<0

I (r,A/2, θ ′, ϕ′).|ξ ′|d�′ for ξ > 0 (6)

We also have the following relations for the radiative inten-
sities far from the ring:

I (r → ∞, z, θ,φ) = I 0(Tinit) for μ < 0 and

I (r, z → +∞, θ,φ) = I 0(Tinit) for ξ < 0 (7)
2.2.4. Thermal boundary conditions
If we take into account the inertia of the ring, the radiative

contribution and the presence of the kapton slab, the thermal
boundary condition around the ring can be obtained from a heat
balance:

ρrCrVr

dTr

dt
= Q̇ − 2π

((
Rr + A

2

)2

−
(

Rr − A

2

)2)

×
(

−kc

(
dT

dz

)
z= A

2

+ (
qz
r

)
z= A

2

)

+ 2π

(
Rr + A

2

)
Arkk

(
dTk

dr

)
r=Rr+ A

2

− 2π

(
Rr − A

2

)
Akk

(
dTk

dr

)
r=Rr+ A

2

(8)

where Vr = π.((Rr + A
2 )2 − (Rr − A

2 )2)A is the volume of the
metallic ring.

A similar relation is obtained if we apply a heat balance to
a ring of kapton embedded in the kapton slab in contact with
the surrounding material, except that no internal heat generation
occurs.

The other boundary conditions are:

For all r and z when t � 0, T (r, z, t) = Tinit (9)

For r → ∞ or z → ∞, T (r, z, t) = Tinit (10)

3. Numerical resolution of the transient coupled heat
transfer

In order to solve the energy equation (2) and to calculate
numerically the variation of the temperature field in each re-
gion during the transient heat transfer, we use an explicit time
marching technique. As it is necessary to know the temperature
field to solve the RTE and to compute �∇.�qr in the surrounding
material, an internal iterative process should be performed at
each time step to produce consistency between the temperature
profile and the radiation field. However, when the time inter-
val between two time steps is small (�t < 0.1 s in our study),
this internal iterative process is superfluous and the temperature
field at the new time step could be calculated directly using the
radiation intensity field at the previous time step without caus-
ing errors. In their study on the temperature rise of a cylindrical
glass gob, Viskanta and Lim [10] use the same simplification.

3.1. Resolution of the energy equation and computation of the
temperature field

At each time step, the resolution of the energy equation
permits to compute the new temperature distribution from the
temperature and radiation intensity profiles at the previous time
step. To solve this equation we use a spatial discretization divid-
ing the surrounding material in nR×nZ elementary volume (see
Fig. 2). As the plane z = 0 is a plane of symmetry, we only con-
sider the heat transfer in the region z > 0. In order to limit the
computation time and memory requirement, the heat transfer
problem is solved in a finite volume around the ring. Then the
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Fig. 2. Illustration of the spatial discretization around the ring.
calculations are restricted to 0 < r < Rmax and 0 < z < zmax.
This volume must be sufficiently large to make sure that the
theoretical temperature profile at the center of the ring is not in-
fluenced by the value of Rmax and zmax. A node is placed at the
center of each elementary volume of coordinate ri and zj . The
numerical resolution computes the evolution of the temperature
(noted Ti,j ) at this node.

According to the discretization used, the nodes (i,0), i =
1, nR, corresponds to the ring or the kapton slab. Moreover,
the discretization along the z-axis provides narrower volumes
near the ring where important temperature gradients are found.
Then, we have:

�z0 = A

�zj =
[

cos

(
(j − 1)π

2nZ

)
− cos

(
jπ

2nZ

)](
zmax − A

2

)
for j = 1,nZ (11)

The discretization of the radius also provides narrower vol-
umes near the ring. We distinguish three different regions for
the discretization of the radius:

for i = 1,nRm − 1; {0 < r < Rr − A/2}

�Ri+1 = �Ri

1.8
and

nRm−1∑
i=1

�Ri = Rr − A

2
(12)

�RnRm = A (13)

for i = nRm + 1,nR; {Rr + A/2 < r < Rmax}
�Ri+1 = 1.8 × �Ri and

nR∑
i=nRm+1

�Ri = Rmax −
(

Rr + A

2

)
(14)

Then the radius rnRm of the center of the nodes (nRm, j ) cor-
responds to the radius Rr of the hot-ring and the temperature
TnRm,0 of the node noted (nRm,0) corresponds to its tempera-
ture.
For the nodes containing the semi-transparent surrounding
medium, which are not in contact with the hot-ring or the kap-
ton slab (nodes (i, j ); i = 1,nR and j = 2,nZ), if we express
the energy equation (2) in a discretised form, we obtain:

T t+1
i,j = T t

i,j + �t

ρCp

[
kc

T t
i+1,j −T t

i,j

�ri+1/2+�ri/2 − T t
i,j −T t

i−1,j

�ri/2+�ri−1/2

�ri

+ kc

ri

T t
i+1,j − T t

i−1,j

�ri + �ri−1/2 + �ri+1/2

+ kc

T t
i,j+1−T t

i,j

�zj+1/2+�zj /2 − T t
i,j −T t

i,j−1
�zj /2+�zj−1/2

�zj

− ( �∇.�qr

)t

i,j

]
(15)

where ( �∇.�qr)
t
i,j is the divergence of the radiative heat flux at

the node i, j at time step t .
For the nodes of surrounding materials placed near the ring

(nodes (nRm,1)) or near the kapton slab (nodes (i,1); i 
= nRm)
a similar discretised relation could be obtained by applying a
energy balance.

The temperature of the ring nodes (nodes nRm,0) and of
kapton nodes (nodes i,0 with i 
= nRm) at the new time step are
obtained from the boundary conditions (Eq. (8)) expressed in a
discretised forms.

Finally, the other thermal boundary conditions in a discre-
tised form are:

T 0
i,j = Tinit for all j and i

T t
nR+1,j = Tinit for all t and j

T t
i,nZ+1 = Tinit for all t and i (16)

3.2. Resolution of the 2-D axisymmetric RTE using the
discrete ordinates method

In order to calculate the radiative flux (�qr)i,j and the ra-
diative flux divergence ( �∇.�qr)i,j in each point of the spatial
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discretization, it is necessary to solve the 2-D axisymmetric Ra-
diative Transfer Equation (5). Several numerical methods can
be used to solve the RTE (spherical harmonics method, the
zone method of HOTTEL, the ray-tracing methods . . .). In our
study, we use the Discrete Ordinates Method based on a spa-
tial discretization of the area around the wire and on an angular
discretization of the space. The angular discretization allows
replacing the angular integrals by finite summations over nd

discrete directions m (μm,ηm, ξm) with given weighting fac-
tors wm. For convenience purpose, the spatial discretization is
the same as the one used for the numerical resolution of the
energy equation. The 2-D discrete ordinates solution for a ra-
diatively participating medium in a cylindrical enclosure has
been widely described, notably by Carlson and Lathrop [11] or
Jendoubi et al. [12] and we will not detail it in this article.

Once the discretised intensity field in the semi-transparent
medium around the wire has been determined, the radiative flux
and radiative flux divergence are calculated using the discre-
tised form of Eqs. (3) and (4):

(
qr
r

)
i,j

=
[

nd∑
m=1

Im
i,jμmwm

]
and

(
qz
r

)
i,j

=
[

nd∑
m=1

Im
i,j ξmwm

]
(17)

( �∇.�qr

)
i,j

= 1

ri

ri+1/2(q
r
r )i+1/2,j − ri−1/2(q

r
r )i−1/2,j

�ri

+ (qz
r )i,j+1/2 − (qz

r )i,j−1/2

�z
(18)

3.3. Validation of the numerical method

The numerical resolution of the 2-D axisymmetric radia-
tive problem has been tested by comparing the results of our
model with various published results [12,13] for different media
where only radiative transfer occurs and for different radiative
boundary conditions. The accuracy of the numerical method
is strongly dependent on the quadrature used for the angular
discretization. We have tested different SN quadratures. The re-
sults obtained when using the quadrature points and weights of
the S6 scheme prove to be quite satisfactory in all cases and we
will use this quadrature in all the following numerical calcula-
tions.

Concerning the entire 2-D transient radiation/conduction
coupling problem, few previous results has already been pub-
lished [14,15]. We have compared the results of our numerical
model with these studies and found a good agreement. How-
ever, the results presented in these papers concern theoretical
problems with boundary conditions notably different from the
ones encountered in our hot-ring simulation. Thus, it seems to
us that it is more suitable to illustrate the validity of our numer-
ical resolution by comparing with hot-ring results available for
two ideal cases:

• Infinite purely conductive medium (β → ∞, kc =
0.035 W m−1 K−1) surrounding a thin hot ring with small
inertia (ρrCrVr → 0) without any kapton slab.
• Infinite transparent medium (β = 0; kc = 0.035
W m−1 K−1) surrounding a thin hot-ring with small inertia
(ρrCrVr → 0) without any kapton slab.

Although these two ideal cases are limiting, they seem to us
more appropriate to illustrate the validations of the model as the
boundary conditions are close to the real problem.

The two ideal test cases correspond to the heating of a hot-
ring without any kapton slab. Then, in order to model them
using the simulation previously described without taking into
account the presence of the kapton, the computations were car-
ried out by setting ρkCk = ρCp and kk = kc and by replacing
the radiative boundary condition (6) by the following ones:

I (Rr − A/2, z, θ,φ) = εr .I
0(T (r,0)

)
+ 1 − εr

π
.

∫
Ω=2π; μ′>0

I (Rr − A/2, z, θ ′, φ′).|μ′|.dΩ ′

for μ < 0 and {z < A/2} (19)

I (Rr + A/2, z, θ,φ) = εr .I
0(T (r,0)

)
+ 1 − εr

π
.

∫
Ω=2π; μ′<0

I (Rr + A/2, z, θ ′, φ′).|μ′|.dΩ ′

for μ > 0 and {z < A/2} (20)

I (r,0, θ,φ) = I (r,0,π − θ,φ)

for {r > Rr + A/2 or r < Rr − A/2} (21)

The first test case could be solved analytically as it corre-
sponds to the ideal case described in Section 2.1. The varia-
tion of the temperature at the center of the ring is then given
by Eq. (1). We compared the results of the analytical formula
with the temperature rise predicted by our numerical simula-
tion. We made two different numerical calculations. The first
one delivers an exact numerical solution by setting �qt

ri,j
= �0

and ( �∇.�qr)i,j = 0 for all i, j > 0 and t . For the second cal-
culation, we fixed β to a very large value (β = 106 m−1). The
other parameter used for the numerical resolution are ρrCr =
41 500 J m−3 K−1, Rr = 0.01 m, A = 0.0001 m, (ρrCrVr =
0.2607 J K−1), kr = 20 W m−1 K−1, ρ = 32 kg m−3, Cp =
800 J kg−1 K−1, Q̇ = 0.063 W, Tinit = 296 K, nRm = 8, nR =
22 and nZ = 33. For both calculations, we set Rmax = 0.2 m,
zmax = 0.1 m. We have checked that these values of Rmax and
zmax are sufficiently important in order for the numerical results
to remain independent of their values. The results obtained then
correspond to those of an infinite medium surrounding a ring of
radius Rr = 0.01 m and width A = 0.0001 m.

The comparison between analytical and numerical results
show that the temperature rise computed by neglecting radiative
heat flux divergence or by setting β = 106 m−1 are both very
close to the analytical solution as the relative differences are
always lower than 1% when t > 33 s. We notice that the max-
imum differences between analytical and numerical results are
found for the very low values of time t . This can be explained by
the fact that the low thermal inertia of the ring which influences
the heat transfer at the beginning of the heating, is neglected by
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the analytical solution whereas the numerical solutions take it
into account.

Regarding the second test case, it corresponds to the trans-
parency limit β = 0. Under this assumption, the conductive and
radiative contributions can be evaluated separately as the sur-
rounding medium does not participate to the radiative transfer
(( �∇.�qr)i,j = 0). There is a direct radiative exchange between
the ring and the medium at T = Tinit, and the radiative heat flux
emitted by the ring only depends on its emissivity and its local
temperature. It can be evaluated by the analytical relation:

qz
rnRm,1/2

= εrσSB
(
T 4

nRm,0 − T 4
init

)
and

qr
rnRm±1/2,0

= εrσSB
(
T 4

nRm,0 − T 4
init

)
(22)

The numerical results obtained by setting ( �∇.�qr)
t
i,j = 0 and

using the previous boundary conditions equation (22) with
εr = 1 in the purely conductive problem have been compared
to those obtained by setting β = 10−6 m−1 in the numerical
resolution of the conduction–radiation coupling. The deviation
between the two numerical methods is always lower than 0.001
in the time range 15–600 s. Thus, the numerical resolution of
the radiative problem proves to give satisfactory results.

As a conclusion the calculations carried out for the two
limiting cases show that, when using the spatial discretization
nRm = 8, nR = 22, nZ = 33 and the S6 angular quadrature,
our numerical method accurately simulates the temperature rise
near the hot ring.

3.4. Influence of a non-complete ring source

The method of prediction of the heat transfer described in
the previous paragraphs has been developed assuming that the
metallic ring source from which the heat is generated was a
complete circle. In reality, the experimental apparatus is not
made of a complete ring source given that a thermocouple has
to be introduced at the center of the circle. An opening is then
made on the ring which is actually a circular arc covering an
angle ψ of approximately 300◦. In order to determine whether
this opening could have an influence on the temperature at the
center of the ring, we have developed a numerical resolution
of the heat transfer with non-axisymmetric thermal boundary
conditions. To simplify the problem, we only modeled a purely
conductive heat transfer. The energy equation has, now, to take
into account the influence of azimuthal angle ϕ:

ρCp

∂T (r, z,ϕ, t)

∂t
= kc

∂2T (r, z,ϕ, t)

∂r2
+ 1

r
kc

∂T (r, z,ϕ, t)

∂r

+ kc

∂2T

∂z2
+ kc

r

∂2T (r, z,ϕ, t)

∂ϕ2
(23)

To solve this equation numerically, we use a discretization
of the azimuthal angle dividing the 2π radians in nϕ equal vol-
umes covering an angle �ϕ = 2π

nϕ
.

We carried out calculations with the parameters presented in
Section 3.3 (kc = 0.035 W m−1 K−1) using a discretization of
the azimuthal angle dividing the 2π radians in nϕ = 24 equal
volumes. We made the calculations for rings with ψ = 11π/6
radians (nϕr = 22),ψ = 3π/2 radians (nϕr = 18) and ψ =
5π/6 radians (nϕr = 10). The comparison with the results ob-
tained for a complete ring source reveal that the temperature
rise at the center of the ring is practically not affected by the
non-complete source. When ψ = 11π/6, the relative difference
with the results computed for a complete ring is always lower
than 0.1% when t > 10 s. For open rings with smaller values
of ψ , this difference increases but remains relatively low. For
example for an open ring which cover less than half a circle
ψ = 5π/6, the deviation is lower than 1% when t > 40 s.

These observations could be explained by the fact that all the
heat point sources constituting the hot-ring are equidistant from
the center of the circle even when the ring is not complete. As
a consequence, the formula (1) is still valid. The small differ-
ences observed for open rings may be due to the fact that the
temperature field in the medium is no more axisymmetric and
can slightly affect the temperature at the center.

However, as it was previously mentioned, all the hot-ring
apparatus used experimentally in this study cover an angle ψ

close to 300◦ (5π/3). We will then assume afterwards that the
temperature at the center of these apparatus is not affected and
all the corresponding computations will be carried out assuming
a complete hot-ring.

4. Results and discussions

As explained in the introduction, the main purpose of the
study is to determine whether the classical hot-ring method
(based on a pure conduction solution) could be used for evaluat-
ing the equivalent thermal conductivity of low-density thermal
insulators where both conductive and radiative heat transfer
occur. To do that, we made a series of measurements of the
temperature rise on four low-density EPS foams using differ-
ent hot ring measuring systems and compared the results to
numerical predictions. From these results, we could evaluate
the theoretical or experimental thermal conductivity of the ma-
terial estimated from the hot-ring method by identifying the
conductivity khot which permits to best fit the experimental or
the numerical temperature rise using Eq. (1). In practice this
conductivity is identified at each time t by varying the value of
khot until we have:

Q̇

4πkhotRr

[
erfc

(
Rr.

√
ρCp√

(4khot(t + �t)

)

− erfc

(
Rr

√
ρCp√

(4khot(t − �t)

)]

= Texp ./num.(t + �t) − Texp ./num.(t − �t) (24)

where Texp ./num.(t) is the experimental or numerical tempera-
ture at time t at the center of the ring

For the experimental results, in order to limit the fluctua-
tions, the value of �t used for the identification is �t = 15 s,
whereas, for numerical results, we used �t = 1 s.

An analysis of the influence of the different parameters has
also been conducted.
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4.1. Description of the low-density thermal insulators used

Measurements have been made on four different EPS foams
in which radiative heat transfer has been proved to play a sig-
nificant part of the total heat transfer. The foams used have been
characterized in a previous study dealing with the modeling
of heat transfer in low-density EPS foams [7]. Their equiva-
lent thermal conductivities keq.m have been measured by the
guarded hot-plate method for an average temperature of 296 K.
These equivalent conductivities can be taken as references. The
global radiative properties of the foams (β,ω and P(ν)) needed
for the numerical simulation have been determined theoretically
in the previous study [7] from their measured structural char-
acteristics such as density or mean cell diameter. The validity
of the model used has been checked by comparing experimen-
tal transmittance and reflectance measurements on thin slab of
foams with the calculated ones obtained using the theoretical
monochromatic radiative properties. Moreover, their conduc-
tive property (kc) has also been determined from validated theo-
retical model of the literature. Thus, we could compute the theo-
retical equivalent thermal conductivity keq.th from the radiative
and conductive properties by solving numerically the steady-
state one-dimensional coupled heat transfer using the discrete
ordinates method in Cartesian coordinates and the control vol-
ume method. Given that the radiative contribution is relatively
important in the EPS foams studied, their theoretical equivalent
conductivity varies with the boundary conditions and especially
with the average temperature of the material. For the tempera-
ture range 296–320 K, the variation of keq.th for the four EPS
foams have proved to follow the law:

keq.th = aT 2 + bT + c (25)

where a (W m−1 K−3), b (W m−1 K−2) and c (W m−1 K−1) are
constants peculiar to each foam.

All the characteristics of the four EPS foams are regrouped
in Table 1 except the heat capacity, which is given for each foam
sample by the relation:

Cp = (ρ − ρair)CPS + ρairCair

ρ
with Cair = 1006 J kg−1 K−1

and CPS = 1200 J kg−1 K−1 (26)

Regarding the sample number 4, we checked that it is suf-
ficiently dense to be considered as an optically thick medium
contrary to the other lighter samples. For this sample, the radia-
tive heat transfer problem is then treated using the Rosseland
approximation. This approximation allows to relate directly the
radiative flux to the temperature gradient and greatly simplifies
the resolution:

qr
r = − 16σSB

3βROSS
T 3 ∂T

∂r
; qz

r = − 16σSB

3βROSS
T 3 ∂T

∂z
(27)

4.2. Description of the hot-ring apparatus

The hot-ring measuring system used is composed of differ-
ent apparatus (see Fig. 3):
Fig. 3. Illustration of the structure of the hot-ring apparatus.

• The measuring apparatus including the heated ring and a
thermocouple placed at the center of the ring.

• A current generator supplying the hot-ring.
• An acquisition system connected to the thermocouple al-

lowing to record the temperature rise with a time step of
1 s.

As it was previously explained, in order to ensure that the
thermocouple and the ring are well positioned, the two elements
are embedded in a slab of kapton of the same thickness as the
metallic ring (see Fig. 3).

The characteristics of the hot-ring apparatus used are: ra-
dius Rr = 0.01 m and thickness A = 180 µm. The hot-
ring is made of a constantan track whose thermal proper-
ties are: ρr = 8900 kg m−3, Cr = 415 J kg−1 K−1 and kr =
10 W m−1 K−1. The thermal properties of the kapton slab
are: ρk = 1420 kg m−3, Ck = 1090 J kg−1 K−1 and kk =
0.2 W m−1 K−1.

Concerning the emissivity of the ring and of the kapton slab,
it is difficult to determine them precisely. However, in order
to estimate it, we made transmittance and reflectance measure-
ments on thin slabs (≈200 µm thick) of kapton and reflectance
measurements on sheets of constantan using an FTIR spectrom-
eter. The experimental results show that a slab of kapton of
200 µm thick could be considered as opaque and purely ab-
sorbing and that the constantan has a very low reflectivity in
the Medium Infrared Radiation range (2 µm < λ < 25 µm). As
a consequence, we will assume that the metallic ring and the
kapton slab are perfectly emissive: εr = εk = 1.

The intensity generator permits to supply the ring of constan-
tan with electric current and to dissipate a certain heat rate Q̇

by Joule effect. The heat generated is proportional to the square
of the current provided and to the electrical resistance Ωr of the
ring. This resistance has been measured using a multimeter and
is 6 � for the hot-ring used.
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Table 1
Thermal characteristics of the four low-density EPS foams used

Sample
number

ρ (kg m−3) keq.m (W m−1 K−1)
at 296 K

β (m−1) ω g a (W m−1 K−3), b (W m−1 K−2),
c (W m−1 K−1)

keq.th (W m−1 K−1)
at 296 K

1 10 0.0482 608.2 0.905 0.58 a = 8.878 × 10−7;
b = −2.09 × 10−4; c = 0.0344

0.05003

2 12.6 0.0428 763.9 0.901 0.58 a = 7.606 × 10−7;
b = −1.808 × 10−4; c = 0.0328;

0.04554

3 18.3 0.0396 1072.4 0.889 0.6 a = 5.308 × 10−7;
b = −9.081 × 10−5; c = 0.02189

0.04136

4 32.0 0.03395 βROSS = 1400 – – a = 2.636 × 10−7;
b = −2.46 × 10−5; c = 0.01803

0.03395
4.3. Comparison of experimental and numerical results

We have used the hot-ring apparatus previously and mea-
sured the temperature rise at the center of the ring for each
of the EPS foam samples presented. We made temperature rise
measurements for the time range 1–600 s with different heating
power Q̇. The measurements are made by placing the hot-ring
apparatus embedded in the slab of kapton between two slabs of
the foam sample considered. In order to ensure a good thermal
contact between the hot-ring and the sample, the two slabs are
slightly compressed using a heavy object. The dimensions of
the foam slabs used are sufficiently important to consider that
the porous medium surrounding the heated-wire is infinite.

We also carried out the corresponding numerical calculation
for each EPS foams samples using the conductive and radia-
tive properties and the densities illustrated in Table 1 and the
properties of the ring presented in Section 4.2. In each case, the
initial temperature of the materials is: Tinit = 296 K.

The thermal contact resistance between the ring and the slab
of kapton and the surrounding medium is neglected.

The numerical parameters used are: nRm = 8; nR = 22;
nZ = 33; S6 quadrature; zmax = 0.1 m and Rmax = 0.2 m. The
values of Rmax and zmax have been chosen in order for the nu-
merical results to remain independent of their values.

4.3.1. Influence of the kapton slab
We have seen that the presence of the slab of kapton on clas-

sical hot-ring apparatus could disturb the propagation of the
heat around the hot-ring. In order to evaluate the influence of
this slab, we made measurements on sample N◦ 4 using the hot-
ring apparatus N◦ 4 before and after having partially removed
the kapton slab. This has been done by cutting the kapton with a
scalpel. We obtained three different configurations for the kap-
ton slab, which are illustrated on Fig. 4. The thickness B of
the kapton still present around the hot-ring for the third con-
figuration illustrated on Fig. 4 is approximately 1 mm and the
radius Rth of the kapton present around the thermocouple is
approximately 500 µm. Then the three configurations could be
described by:

• Configuration 1: kapton slab present for all r .
• Configuration 2: kapton slab present for r < Rr + B/2.
• Configuration 3: kapton slab present for r < Rth and

Rr − B/2 > r > Rr + B/2.

At the same time, we also carried out the simulations of tem-
perature rise at the center of the ring for foam sample N◦ 4 and
for fictitious hot-ring apparatus corresponding to the three dif-
ferent configurations of the kapton slab. This has been done by
replacing the density ρk , the heat capacity Ck and the thermal
conductivity kk of the kapton by the corresponding properties
(ρ, Cp and kc) of the EPS foam for the nodes which are no more
occupied by the kapton slab (nodes (i,0) with ri > Rr + B/2
for configuration 2 and nodes (i,0) with ri > Rr + B/2 or
Rth < ri < Rr − B/2 for configuration 3). The comparison
between the temperature rises obtained experimentally and nu-
merically for the three configurations is illustrated on Fig. 5 for
a heating power Q̇ = 0.135 W. We also show the theoretical
Fig. 4. Illustration of the three different configurations of the hot-ring apparatus N◦ 1 after the removal of the kapton slab.
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Fig. 5. Comparison between experimental and numerical evolution of the temperature for the three different configuration of the hot-ring apparatus.
evolution of Tc in the ideal case where there was no kapton slab
at all. The parameters used for the computation are the same as
those of Section 3.3.

The results depicted on Fig. 5 show that the presence of kap-
ton has a strong influence on the temperature rise at the center of
the hot-ring apparatus. Indeed, the numerical and experimental
temperature rise obtained in the different configurations are in
good agreement and reveal that the slab of kapton tends to slow
down the heat transfer from the hot-ring to the center of the cir-
cle. This can be explained by the fact that the thermal inertia of
kapton slab (ρkCk = 1.55 × 106 J m−3 K−1) is much more im-
portant than that of the surrounding medium with low density
(ρCp = 38 400 J m−3 K−1). As a consequence, a more impor-
tant amount of heat and then a more important heating duration
is required to reach the same temperature level when a piece
of kapton is present. The heat transfer is then strongly affected
when the hot-ring measuring method is applied to low-density
materials such as EPS foams. Fig. 5 also shows that when the
kapton only occupies the area r < Rr + B/2, the temperature
Tc reaches larger values than when the kapton slab is complete.
As it was expected, we could also notice that in configuration 3
(only a thin width of kapton present around the ring), the evo-
lution of the temperature is very close to the ideal case where
no kapton is present at all.

In order to determine whether Eq. (1) still describes the
evolution of the temperature Tc when kapton is present, we
have computed the temperature rise Tc for a purely con-
ductive medium with kc = 0.035 W m−1 K−1 and ρCp =
38 400 J m−3 K−1 in the three different configurations and iden-
tified the evolution of the conductivity khot estimated from the
numerical temperature rise (Eq. (24)). The results are illustrated
on Fig. 6 and are referenced as classical identification (classic.
ident.). The figure shows that when no kapton is present (ideal
case), the identification procedure permits to estimate very ac-
curately the thermal conductivity kc of the surrounding material
as soon as t is greater than approximately 50 s. However when
a piece of kapton is present (configuration 1 or 3), Eq. (1) no
more describes faithfully the evolution of the temperature at
the center of the apparatus. The value of khot identified varies
with the time t and does not correspond to kc. The error in
the estimation of kc is not negligible and higher when a more
important quantity of kapton is present. Thus, the classical hot-
ring measuring method is not adapted for the measurement of
the thermal conductivity of low-density thermal insulators.

To overcome the problem due to the presence of the kapton
slab, which disturbs the heat transfer, we have developed a mod-
ification of the identification procedure, which takes into ac-
count the delay of the temperature rise when kapton is present.
This modification is based on the numerical predictions com-
puted with and without the kapton slab. The principle is to
modify the measurement time t into time tmod corresponding
to the time, which would be required from the beginning of the
heating to reach the same value of Tc in the case where no kap-
ton was present. Then, the use of the modified time tmod instead
of the real measurement time t in the identification procedure
described in Section 4 permits to estimate the effective (phonic)
thermal conductivity kc of the material with a good accuracy.
The relation between tmod and t could be determined from the
numerical predictions of temperature rise with and without the
kapton slab by computing, for each measurement time t , the
corresponding value of tmod, which leads to the same elevation
of temperature �Tc. We have shown that, in the case of a hot-
ring apparatus with a kapton slab used on a low density thermal
insulators, the evolution of tmod with t could be fitted very ac-
curately using a relation of the form:

tmod = a6t
6 + a5t

5 + a4t
4 + a3t

3 + a2t
2 + a1t + a0 (28)

The values of the parameters ai (units: s−i+1) depend on the
properties of the kapton slab and hot-ring (Rr,ρk,Ck, kk,A,ρr ,
Cr and kr ) but also on the thermal properties of the surround-
ing material in which the measurement is made. For example,
when measurement is made on a purely conductive thermal
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Fig. 6. Evolution of the conductivity khot estimated from the numerical temperature rise in different configurations using the classical identification procedure
(classic. ident.) and the modified identification procedure (modif. ident.).
insulator with the properties ρCp = 38 400 J kg−1 K−1 and
kc = 0.035 W m−1 K−1 using hot-ring apparatus N◦ 1 (Rr =
0.01 m, ρkCk = 1.55 × 106 J m−3 K−1, kk = 0.2 W m−1 K−1,
A = 180 µm, ρr = 8900 kg m−3, Cr = 415 J kg−1 K−1 and
kr = 10 W m−1 K−1) with complete kapton slab, we have:

tmod = 5.63 × 10−15t6 + 1.28 × 10−11t5 + 1.21 × 10−8t4

+ 6.17 × 10−6t3 + 1.96 × 10−3t2 + 0.417t + 0.184

(29)

The evolution of the thermal conductivity khot estimated
from the temperature rise in the presence of a complete kapton
slab (configuration 1) using this modified identification proce-
dure is depicted on Fig. 6 (modif. ident.). One can see that the
new identification procedure estimates very accurately the con-
ductivity of the surrounding material after a time t of approxi-
mately 100 s, and thus it permits to eliminate the perturbations
of the heat transfer due to the kapton slab. The main problem
of the modified identification procedure is that, in order to de-
termine the parameter ai of Eq. (29), one has to know, a priori,
the value of the thermal conductivity kc , which precisely has to
be measured. However, in practice, given that the delay of the
temperature rise due to the kapton slab is especially due to the
inertia effects, the thermal conductivity of the surrounding ma-
terial has only a very slight influence on Eq. (29). Thus, it is
sufficient to simply know the order of magnitude of kc to deter-
mine a relation, which is accurate enough. To illustrate this, we
have depicted on Fig. 6 the evolution of the conductivity khot es-
timated from the numerical temperature rise of configuration 1
(complete kapton slab) using the modified identification pro-
cedure with a value, a priori, of kc = 0.07 W m−1 K−1. One
can remark that even when the value of kc used for the estima-
tion of Eq. (29) is notably different (two times greater) from the
real thermal conductivity, the modified identification procedure
allows to determine an accurate value of khot. The time neces-
sary for khot to converge to the exact value of kc is a little more
important than when the right conductivity is used but remain
relatively low (approximately 150 s in our case). Our modified
identification procedure could then be used with a good accu-
racy if the order of magnitude of kc is known and thus, the
hot-ring measuring method using classical hot-ring apparatus
could be extended to low-density materials, which are purely
conductive.

4.3.2. Influence of the foam sample: Radiation effects
In the previous paragraph, we have shown that the classical

hot-ring method is not adapted to the measurement of the ther-
mal conductivity of low-density conductive materials given that
the presence of the slab of kapton disturbs the heat transfer. The
results of the classical hot-ring method then lead to noticeable
errors for this kind of medium. Therefore, we developed a new
procedure allowing to eliminate the influence of the inertia of
the slab during the identification of the conductivity khot and
to extend theoretically the method to the low-inertia conductive
materials.

However, in most of the real low-density materials such a
low-density thermal insulators, the solid matrix is no not suf-
ficiently dense to consider that the material is opaque to the
infrared thermal radiation. The materials are said to be semi-
transparent and a significant part of the total heat flux is trans-
ferred by radiation. Thus, another problem appears if we would
like to apply the hot-ring method to real low-density materials.
Indeed, Eq. (1) is only valid for purely conductive materials. As
a consequence, the hot-ring measuring method could theoreti-
cally not be used on low-density materials where the radiative
contribution is not negligible. To analyze the influence of the ra-
diative contribution and determine whether the hot-ring method
could be extended to materials where radiative heat transfer
occurs, we have compared the experimental and numerical re-
sults obtained for the four EPS foam samples presented in Sec-
tion 4.1. These foams behave like semi-transparent materials
for which the radiative contribution is more or less significant
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Fig. 7. Comparison of the temperature rise obtained experimentally and numerically for the four EPS sample using a heating power Q̇ = 0.063 W.

Fig. 8. Comparison of the estimated thermal conductivity khot obtained from the experimental and numerical temperature rise using the modified identification
procedure for the four EPS sample.
(see Section 4.1). The comparison of experimental and numer-
ical temperature rises for a heating power Q̇ = 0.063 W using
the hot-ring described in Section 4.2 is illustrated on Fig. 7. The
results have been obtained by using or simulating the classi-
cal hot-ring apparatus with a complete kapton slab. From these
numerical and experimental temperature rises, we also have
identified, for each EPS foam sample, the corresponding ther-
mal conductivity using the modified identification procedure
described in Section 4.3.1 which permits to eliminate the in-
fluence of the kapton slab. The whole results are regrouped on
Fig. 8 where we also have depicted the evolution of the theoret-
ical equivalent conductivity keq.th for each foam.

One can notice that the accordance between the numerical
and experimental evolutions of the temperature at the center of
the ring is very good for each of the foam sample studied. We
observe that the temperature level reached at the end of the mea-
surement is more important for the denser foams.

With regards to the evolution of the estimated conductiv-
ity khot, the accordance between numerical and experimental
results is not as remarkable as for the temperature rise but re-
mains relatively good, especially, the classification of the foam
according to their thermal conductivity is well-predicted by the
experimental results. The fluctuations observed for the experi-
mental results are due to the discrete evolution of the tempera-
ture measured by the thermocouple. If we compute the average
relative difference between numerical and experimental khot in
the time range 150–600 s we obtain 3.8% for sample N◦ 4, 5.6%
for sample N◦ 3, 5.8% for sample N◦ 2 and 5.3% for samples
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Fig. 9. Comparison of the numerical khot of samples N◦ 1,3 and 4 calculated for a perfectly emissive (εk = εr = 1) or a perfectly non emissive (εk = εr = 0)
apparatus or assuming purely conductive foam samples (samples N◦ 1′,3′ and 4′).
N◦ 1. We can remark that the evolutions of khot estimated from
numerical temperature rises converge to the theoretical equiv-
alent thermal conductivity keq.th for samples N◦ 4 and 3, but
reaches slightly lower values for samples N◦ 2 and 1 even for
very important measurement time (t → 600 s). These differ-
ences may be due to the importance of radiative contribution in
these extremely light foam samples. One can also remark that
the convergence of the numerical khot to the equivalent thermal
conductivity keq.th is faster for dense foam sample.

In order to characterize more precisely the contribution of
the radiative heat transfer to the evolution of the estimated
khot, we conducted additional simulations. Then, we consid-
ered four fictitious sample noted N◦ 1′,2′,3′ and 4′ having the
same physical characteristics (ρ,Cp) and the same equivalent
conductivity keq.th as samples N◦ 1, 2, 3 and 4 but, in which,
the heat transfer is assumed purely conductive (kc = keq.th;
β → ∞). We also conducted simulations for the four EPS
foams in the fictive case where the emissivities of the ring and
of the kapton slab were null (perfectly reflective slab). The com-
parison between the evolution of khot for the fictitious materials
(1′,2′,3′ and 4′) and for the real EPS as well as the analysis of
the numerical differences observed when the emissivity of the
slab goes from 1 to 0 would give us more indications on the
influence of the radiative contribution. The entire results (real
sample, fictitious sample and εk = εr = 0) are illustrated on
Fig. 9 where we also have depicted the evolution of the theoret-
ical equivalent conductivity keq.th. For clarity purpose we have
not represented the evolution of the different khot and keq.th for
samples N◦ 2 and 2′.

The analysis of the results leads to several remarks:
First, the results obtained with the fictitious purely conduc-

tive materials (N◦ 1′,3′ and 4′) indicate that after a certain
time t the identified khot converges to the equivalent conduc-
tivity keq.th of the materials. Therefore, our modified identifi-
cation procedure permits to determine an accurate value of the
conductivity of the material. The time t required for khot to con-
verge to the equivalent conductivity varies only slightly with the
medium considered and is approximately 80 to 100 s if a rela-
tive accuracy of 5% is required.

Secondly, one can remark that when the model takes into ac-
count the radiative contribution and the real apparatus (samples
N◦ 1,3 and 4 with εk = 1), khot does not fit exactly the evolution
obtained for the corresponding purely conductive materials. For
samples N◦ 4′ and 4, which is optically thick, the relative differ-
ence is practically imperceptible and the estimated conductivity
calculated for sample 4 converges exactly to the equivalent con-
ductivity. On the other hand, for samples N◦ 3 and especially
N◦ 1, which are not optically thick materials, the value of khot
does not converge exactly to keq.th but reaches a slightly lower
value. These convergence values are respectively 1% and 3%
lower than keq.th for samples N◦ 3 and 1. One can notice that
these differences are almost negligible. Fig. 9 also shows that
for the real foams, the convergence of khot is slower than for
the corresponding fictitious purely conductive medium. For ex-
ample, the time required to reach a value of khot which is 5%
different from that obtained at t = 600 s is 90 s for sample N◦ 3
and 180 s for sample N◦ 1. Then, the lighter the foam is, the
slower khot converges.

Finally, substantial differences are found between the nu-
merical results obtained assuming non-emissive or perfectly
emissive apparatus except for sample N◦ 4. For the other foam
samples, the estimated conductivity khot computed with a non-
emissive apparatus (εk = εr = 0) converge to slightly lower
values than when εk = εr = 1. The relative difference after a
measurement time t = 600 s are 1.4% and 3.6% for samples
N◦ 3 and 1 respectively. These observations could be easily ex-
plained by the fact that when the emissivities εk and εr of the
apparatus get lower, the radiative energy emitted and thus trans-
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Fig. 10. Evolution of the numerical and experimental conductivity khot for sample N◦ 1 and different heating powers.
ferred in the material is less important and all is going on as if
the equivalent conductivity of the material was lower. On the
other hand, the emissivity of the apparatus does not influence
the estimated conductivity for sample N◦ 4. Indeed, in this op-
tically thick material, the mean free path of photons is much
lower than the dimensions of the material and thus, the radiant
intensity field and the radiative heat flux inside the medium are
not affected by the intensity emitted by the apparatus.

As a conclusion, the comparison of the numerical results in
the different fictitious cases show that, when the materials con-
sidered behaves like optically thick media, the hot-ring measur-
ing method with the modified identification procedure permits
theoretically to determine exactly the equivalent thermal con-
ductivity of the materials although the heat transfer is not purely
conductive. Moreover, this value is not affected by the emissiv-
ity of the apparatus. On the other hand, when the density of the
semi-transparent materials is not sufficient for the Rosseland
approximation (Eq. (27)) to be valid, the thermal conductivity
identified after a sufficient measurement time is not consis-
tent with the equivalent thermal conductivity measured by the
guarded hot plate method. The more transparent the foam is, the
more important the error is. Moreover this error depends on the
emissivity of the apparatus used, and a perfectly emissive appa-
ratus is theoretically required to minimize it. However, we have
seen that the classical hot-ring apparatus could be considered
as perfect emitter. Moreover, the maximum difference observed
numerically when εk = εr = 1 for sample N◦ 1 which consti-
tutes the lighter EPS foam obtainable is approximately 3%. This
value is lower than the measurement uncertainty of most of the
guarded hot plate apparatus and is almost negligible. Thus, it
seems to us that the hot-ring method using classical apparatus
and the modified identification procedure could be extended to
all materials, even the very light insulators, with an acceptable
accuracy.
4.3.3. Influence of the heating power Q̇

In order to confirm the accordance between numerical and
experimental results, we have studied the influence of the heat-
ing power Q̇ in both cases by measuring and simulating the
temperature rise for Q̇ = 0.063 W and Q̇ = 0.112 W us-
ing a hot-ring apparatus different from that presented in Sec-
tion 4.2 with the following characteristics: Rr = 0.0075 m;
A = 230 µm, Ωr = 2.8 � and εr = εk = 1. We present the re-
sults obtained for the sample N◦ 1 on Fig. 10 where we also
depict the evolution of keq.th for the two heating powers.

As it can be observed, the heating power has a slight but non-
negligible influence on the thermal conductivity measured. In-
deed, both experimental and numerical results show that a high
heating power leads to a higher value of the conductivity mea-
sured. This is not surprising given that the equivalent thermal
conductivity of the EPS foams increases with the temperature
(Eq. (24)). This is especially due to the fact that radiative heat
transfer, which is significant in foam sample N◦ 1, is strongly
dependent on the temperature. The accordance between the es-
timated conductivity obtained experimentally and numerically
using the modified identification is still very good. As it has
been noticed in the previous paragraph, one can remark that ow-
ing to the importance of radiative heat transfer, the conductivity
khot identified from the numerical results does not converge ex-
actly to the equivalent thermal conductivity keq.th. The relative
difference is almost independent of the heating power supplied.
As a conclusion, one should always refer to the heating power
used when measuring the thermal conductivity with the hot-ring
method.

5. Conclusions

The hot-ring method is a transient technique for measuring
the thermal conductivity of materials whose principle is very
close to he widely known hot-wire method. It could present
an interest for measurements on low-density thermal insula-
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tors for which the hot-wire method has been proved to be
poorly adapted. Indeed, for these materials, due to the lim-
ited length of classical hot-wire apparatus, the assumption of
one-dimensional heat transfer is not valid during all the mea-
surement duration. On the other hand, the hot-ring technique
does not make any assumption on the dimension of the heating
elements. In this paper, we investigated numerically and exper-
imentally the use of this technique for the measurement of the
equivalent thermal conductivity of low-density EPS foams in
which both conductive and radiative heat transfer occur.

First, we observed that the numerical and experimental re-
sults are in good agreement and then that our numerical model
simulates satisfactorily the measuring technique. Numerical
and experimental investigations also revealed that, owing to the
presence of a slab of kapton ensuring the positioning of the
thermocouple, the thermal inertia of classical hot-ring appara-
tus disturbs the temperature rise at the center of the ring. As a
consequence, the classical procedure used to identify the ther-
mal conductivity of the material leads to noticeable errors. To
overcome this difficulty, we proposed a modified identification
procedure based on the numerical results computed with and
without the slab of kapton, which permit to correct the influence
of the thermal inertia of the apparatus. To use it successfully, it
is only necessary to know the dimensions and properties of the
kapton slab and the order of magnitude of the thermal proper-
ties of the material studied.

Secondly, we applied this modified identification procedure
to several low-density EPS foams in order to determine whether
the hot-ring technique could be extended to materials where ra-
diative heat transfer also occurs. Indeed, the basic equation of
the hot-ring method is rigorously only valid for purely conduc-
tive medium. The experimental and numerical results showed
that when a perfectly emissive apparatus is used the thermal
conductivity identified from the temperature rise is in good
agreement with the equivalent thermal conductivity stemming
from the guarded hot-plate method. We only observe small dif-
ferences for the lighter foams (ρ < 20 kg m−3) which do not be-
have as optically thick materials. The influence of the radiative
heat transfer is then characterized by a slightly smaller value of
the identified conductivity. However, even for extremely light
foams (ρ = 10 kg m−3), the relative difference remains always
lower than 3%, which is lower than the measurement uncer-
tainty of most of the other measuring techniques. On the other
hand, for these non-optically thick foams, numerical investi-
gations show that, when the apparatus (ring + kapton slab) is
not perfectly emissive, the difference between the conductiv-
ity measured by the two methods reaches higher values which
could no more be neglected. Fortunately, due to their composi-
tion (constantan and kapton), classical hot-ring apparatus could
be considered as perfect emitters. Then, we can conclude that
the hot-ring method based on the modified identification pro-
cedure could be extended to the low-density thermal insulators
with an acceptable accuracy.
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